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RELIABILITY DATA ANALYSIS MODEL 

INTRODUCTION 

Current Army regulations 111 reouire the snecification of ouanti- 

fied reliability goals in the develonment of new weanon systens. 

rhese reliability goals must also be verified bv tests nrior to final 

acceptance and fielding of the systen.  Reliability, bv definition, 

is a nrobabilistic quantitv.  In addition, the amount of testing that 

can be conducted is limited by cost and time considerations and conse- 

quently reliability assessment must be conducted within a statistical 

framework. To assist in this assessment effort a statistical data 

analysis computer model has been nrenared and is described in this 

report.  Essentially, the model computes noint estimates and confi- 

dence limits for reliability of components, subsystems and system 

from component test data. 

The snecific reliability indnx considered is the mission relia- 

bility defined as the probability that a given system will success- 

fully perform its intended function without failure for a specified 

period of time under a given set of conditions. Time can be given 

in terms of clock time, rounds, cycles, miles, etc. The svstem mav be 

required to nerform a number of missions over its exnected life. 

Army Regulation AR70S-50, "Army Materiel "el i abil itv and ''attain- 
ability," Headquaters Dent, of the Army, Washington, D.C., 8 January 
1968. 



PURPOSE OF THE RELIABILITY COMPUTER MODEL 

The reliability model is intended to serve a number of useful 

purposes. First, reliability analyses for the realistic situations 

encountered in weapon system testing and for all but the simplest 

assumptions made for computation entail rather complicated mathemati- 

cal formulation and tedious computation. The computer model conse- 

quently provides a systematic means of incorporating more complex 

analyses with less restrictive assumptions into a routine data analy- 

sis procedure.  Second, the model provides greater speed in obtaining 

results of data analyses. Third, the mathematical procedures and for- 

mulations incorporated into the model provide a means of standardizing 

reliability assessment among design agencies, test agencies and the 

user. Finally, the model provides a basis for determining the type 

and amount of test data required to perform a particular kind of 

analysis. This provides insight into planning of tests and data 

collection procedures required. 

TYPE OF DATA CONSIDERED FOR ANALYSIS 

The type of data considered for analysis is failure and suspen- 

sion data on a component or a number of components making up a sub- 

system or system. Definition of failure depends on the particular 

requirements and the mission profile of a givep system and can 

include part breakage, out-of-tolerance performance, incipient 



failure, safety hazard, etc.  Suspended data is obtained when a compo- 

nent is removed from the test without failure, the test is terminated 

without failure or when the failure of a component is attributable to 

the failure of another component or cause. 

Since failure rates and resulting mission reliabilities are 

generally transient, all data is assumed collected as a function of 

system age.  Snecifically, the age given in terms such as rounds, time 

or miles on individual romnororts within a systor at failure or sus- 

pension is required.  In pen^ral if is not enough to record onlv the 

total test time and number of failures except in the case of constant 

failure rate. 

TYPE OF INFORMATION nr. NEGATED 

The tvpe of information generated bv the model includes results 

of analyses for each individual component within a subsvstem, for 

each subsystem making UP a given svstem and for the entire system. 

Component information includes results of distribution selection 

procedures, Kolmogorov-Smimov goodness-of-fit tests, maximum likeli- 

hood estimates of distribution parameters, noint estimates of the 

mission reliability as a function of svstem age ror the non-constant 

failure rate case and confidence limits on average mission reliahilitv 

over the system life for the constant failure rate case. Subsystem 

and system information generated includes no^nt estimates and confi- 

dence intervals on mission reliability for the constant failure rate 

case. 



A more complete description of required input data for the model 

and the resulting output information will be presented in subseouent 

sections dealing with the computer program. 

USUAL ASSUMPTIONS FOR DATA ANALYSIS AND THEIR LIMITATIONS 

It is worthwhile at this point to review the usual assumptions 

made in performing a reliability assessment for a given system and 

the desirability of relaxing these assumptions for some of the realis- 

tic cases encountered in weapon system testing. Undoubtedly, the most 

common assumption made in reliability data analysis is the assumption 

of constant failure rate for components and systems. The most signi- 

ficant implication of this assumption is that the probability of 

failure of a component or system is independent of its age. Components 

are assumed to fail at completely random points in time. This, of 

course, does not permit the full treatment of the cases of early 

failures and wear-out failures common to mechanical components. 

There are a number of reasons why the constant failure rate 

assumption is so often made. First, the constant failure rate is 

often assumed primarily to simplify analysis and computation. Second, 

straightforward techniques for determining confidence intervals on 

component reliability from test data are readilv available for con- 

stant failure rate. Third, testing procedures are greatly simplified 

since only the total number of failures and total test time are re- 

quired for data analysis. Also, the amount of data required for each 

component is not as critical as in those cases where theoretical 

8 



distribution selection must be considered. Finally, for system relia- 

bility verification tests, individual component data is not required 

witb all failures being treated as system failures. This is true 

onlv if all components have enua] test times. 

Assuming a constant failure rate can lead to three tynes of 

errors; the first is in the computation of reliability for fixed '1TRr 

(mean time between failures), the second is in the computation of 

confidence limits, and the third is in the estimation of 'TB^ when 

susnension or censored data has been generated.  The magnitude of the 

error in computing reliability for fixeH ^(TRT7 cannot be determined ;n 

general.  For illustrative purposes, however, consider ^  hypothetical 

case in which a system is made up of coual components in series. 

Assume further that each component has a Weibull distribution and an 

*1TBF (mean time between failure) enual to twice the expected system 

life. The number of missions over system life is assumed to be ISO. 

The magnitude of the error in assuming constant failure rate can now 

be determined for this particular case. Table I lists the results of 

average system reliability for different numbers of components in the 

system and for various values of the Weibull shape narameter R.  FOT 

a shape parameter 8 equal to 1.0 the Weibull distribution reduces to 

the exponential which describes the distribution for constant failure 

rate. For values of R greater than 1.0 the failure rate is an increas- 

ing function of time characteristic of wear-out phenomena. The greater 

the value of R the more peaked the distribution is about the mean. 

As can be seen from Table I, large differences can be obtained when 
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assuming exponential or constant failure rate for Weihul1 components 

that in actuality have 3 values greater than 1.0,  ^or example, a svs- 

tem of SO equal components, each component having a Weihul1 share para- 

meter equal to 3.0 would have an averarc svsten reliability of 0.072. 

Assuming a constant failure rate op the other hand would yield a con- 

nuted reliability of 0.846 which is significantly different than the 

true value for this case. 

Reliability for the Weihul 1 distribution withf,>l was computed 

using renewal theory where, in this rase, a component is replaced or 

renewed upon failure.  The mathematical formulation for the renewal 

case is described in the Analytical Methods section of this report. 

The second source of error in assuming constant failure rate is in 

the computation of confidence limits. Consider as an examnle nroblem 

a test sample o^ failure times given as 2000, 2200, 1800, 1000 and 

2100.  For this nroblem the '1TBF is 2000 and the standard deviation is 

158.  Lower confidence limits on the true '1TBF can readily be computed 

assuming different underlying distributions of failure times.  ror 

examnle, the lower 00° confidenced moans for the exponential (constant 

failure rate)and the normal (increasing failure rate) distributions 

are 1250 and 1758 respective^'.  It is common in reliability verifica- 

tion tests to rcnuire that the lower confidenced "ITBF (or reliability) 

exceed a given fixed value for accentance.  If the requirement in the 

above problem were 1500, the assumption of the exponential distribution 

would lead to rejection and the assumption of the normal distribution 

would lead to acceptance.  Although the above is an oversimplification, 

11 



it does indicate the possible error in assuming the wrong distribution 

in determining confidence limits. 

The third source of error in assuming constant failure rate lies 

in the unrealistic handling of suspension data in estimating population 

parameters. Consider as an example problem a test sample of failure 

times given as 3800, 3900, 4100 and 4200 and a samnle of suspension 

times given as 3500, 4000, 4000 and 4500.  In this example, eight dif- 

ferent components were tested but onlv four failed. The point esti- 

mates of MTBF assuming exponential and Weibull distributions are 8000 

and 4130 respectively. As can be seen the '1TBF for constant failure 

rate is nearly twice the value for the nonconstant failure rate Weibull 

distribution. 

In the first two sources of error discussed above the computed 

reliability is generally conservative for components and systems that 

wear out. Reliability and lower confidence limits are conservative in 

that lower than true values are computed.  In the third source of error 

the resulting reliability is generally nonconservative. The unrealis- 

tic handling of suspension data seems to be the most significant 

source of error in assuming constant failure rate for testing of 

mechanical systems. 

A second assumption or requirement which is often made in relia- 

bility analysis is that the data sample be complete. Consequently 

only the failure times in a given test are considered for analysis. 

The main reason for this assumption is that statistical methods that 

treat suspended data along with the failure data are in many cases 

12 



restrictive, complicated or not available.  It is clear, however, that 

susnended data, particularly data involving suspension times that are 

greater than some or all of the failure times should contribute signifi- 

cant information toward determininn the unknown population parameters. 

This was observed in the above discussion of the constant failure rate 

assumption.  Suspepded data can result in manv ways.  In weanon svstem 

testing, for example, it cap arise from the removal of a comnonent from 

test without failure, comnletiop of a system test nrior to failure or 

through failure resulting directly from the failure o*" another compo- 

nent or cause such as accident. 

A third assurmtiop which is often made in determining confiHence 

limits on system reliability from svstem tests is that the svstem can 

be treated as if it were a single comnonent with no differentiation 

being made as to which component within the svstem actually fails. 

All failures are treated as svstem failures. A necessary underlving 

assumption for this approach is that either all components have con- 

stant failure rate or all components have failed a number of times so 

that steady state conditions prevail.  In this instance confidence 

intervals on system reliability are readilv derived usin^ the theory 

applicable to the constant failure rate case. A limitation o*" this 

assumption is that results of individual component or subsvstem tests 

cannot be included with the system test results.  Mso, if components 

are redesigned during the course of a test, which is often the case in 

large weapon system testing, total test time on the redesigned compo- 

nents are not the same as the total system test time. The usual 

13 



methods of analyzing system test data consequently do not annly in 

this case. 

Finally, large sample theory is often assumed in computing confi- 

dence intervals since methods to handle small samples may not exist 

or are too difficult to use. 

MAIN FEATURES AND STATUS OP THE PRESENT MODEL 

The reliability data analysis model presented in this renort con- 

tains a number of general solutions to overcome many of the limitations 

of the usual assumptions discussed in the previous section. The main 

features of the model are summarized as follows: 

a. Performs goodness-of-fit test to determine the best fit 

probability distribution of component failure times. The theoretical 

distributions considered are the exponential, normal, lognormal, 

Weibull and gamma. 

b. Computes maximum likelihood estimates of population para- 

meters for general theoretical distribution of failure times. 

c. Can handle suspended data which results when a component is 

tested without failure. 

d. Computes point estimates of reliability for the renewal case; 

that is, for the non-constant failure rate case. 

e. Computes lower confidence limits on component, subsystem 

and system reliability for the constant failure rate case. 

14 



The present version of the reliability data analysis computer 

model does not contain all o^ the features ultimately planned for in 

the final version.  Mnst significant o*" the limitations is the assumn- 

tion of constant failure rate in determining confidence intervals 

although point estimtes n*  reliability are determined fnr the general 

non-constant failure rate case.  In addition components are assumed to 

he in series for system reliabi]ity computation and no provision is 

presently made for nreventive maintenance narts replacement of comno 

nents.  The analytical methods section o*  this report descrihes the 

techniques to be employed in removing these limitations with work on 

future versions of the model presently being undertaken. 

The remainder of this report contains a discussion of the analyti- 

cal methods used for commutation followed by a presentation of the 

computer program with example input and outout information. 

ANALYTICAL METHODS 

The purpose of this section is to briefly outline the mathematical 

and statistical methods used or planned in the reliahility data 

analysis model. A complete discussion of probability and statistical 

theory will not be presented in this report and the reader is referred 

to the references cited for more complete discussions. Much of the 

theory presented is straightforward and readily found in the litera- 

ture.  However, some of the statistical and computational methods used 

are the result of research efforts at the Watervliet Arsenal and will 

IS 



be the subject of forthcoming reports and publications. 

There are a number of good texts on the general subiect of reli- 

ability. The texts found particularly useful to this writer are those 

by Lloyd and Linow [2], Barlow and Proschan [3], ^nedenko, Belyayev 

and Solowev [4] and Pieruschka [5]. 

Computation of Component Mission Reliability. 

Although one of the computational goals in th<* model is system 

reliability it is necessary to develon the analytical methods for 

computing system reliability by considering the individual components 

or elements making up the svstem. This is narticularlv true in the 

case of non-constant failure rate components. 

At the present time there is considerable confusion among design 

engineers on the definition of component reliability when the compo- 

nent is part of a system. The confusion lies primarily on the time 

reference used in computing reliability. Many texts on reliability 

consider time in terms of component age. However, for system reliabi- 

lity the system age is the important time reference.  Since components 

that fail within a system are replaced or renewed at random noints in 

2 
Lloyd, D.K., and Linow, M., "Reliability:  Management, Methods, and 
Mathematics," Prentice-Hall, Englewood Cliffs, New Jersey (1962). 

3 
Barlow, R.E., and Proschan, F., "Mathematical Theory of Reliability," 
John Wiley ft Sons, New York (1965). 

4 
Cnedenko, B.V., Belyayev, Yu.K., and Solovyev, A.D., "Mathematical 
Methods of Reliability Theory," Academic Press, New York (1969). 

5Pieruschka, E., "Principles of Reliability," Prentice-Hall, Englewood 
Cliffs, New Jersey (1963). 
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time, comnonent apes are generally not known a ~riori as a function of 

system age.  In this instance renewal theorv must be emnloved t-o 

determine the transient mission reliability as a function of system 

age. This asnect of the nroblem will be considered in the following 

sections. 

(a) Component Reliability Baser! on Component Ape. 

Consider first a single con-<-nen* '/here the time reference 

is component age.  Let 

f(t)  = Probability densitv distribution o*" coT->on°nt failure 
times or tine between Fiilur^q. 
t 

F(t)  = / f(t)dt  =  cumulative distribution r>mofion. 
0 

• Probabilitv that the component will *ai 1 in the time 
interval (0,t). 

R(t) • Reliability defined as the probability that the comno- 
nent will not fail in the time interval fO,t) where 
the comnonent is assumed new at tine o. 

=  1 - P(t) 

Aft)  = Conditional failure rate where X(t)dt is the nrohabilitv 
of failure in the time interval (t,t+dt) "iven that the 
comnonent has survived to time t. 

The conditional failure rate > ft") defined above is a useful and 

descrintive quantity in reliability theory.  It can be determined fron 

the probability distribution of failure tines as follows: 

Aft)  =  fft)/fl-^ft)) 

= fft)/Rft) m 

Figure 1 shows descrintivelv the failuro rate for three tvmcal cases 

in reliability; decreasing, constant and increasing failure rate. 

17 



Component 
Failure 
Rate 

1 
MTBF" 

Increasing railure Rate 
flVear Out ^ail ires)   / 

Constnnt 
\         (Independent of A.rre') 

necrensin" 
fRarlv railures ) 

0 
Component Ar;e 

Figure 1. Component failure Rate vs Component Ape 

The decreasing failure rate implies that the longer a component survives 

the lower its probability of failure. This is typical of early failures 

in which components containing manufacturing or material flaws tend to 

fail early. The increasing failure rate is tynical of components that 

wear out where the longer a component survives the higher the probabi- 

lity of failure. Mechanical components in which early failures have 

been eliminated generally have increasing failure rates caused by such 

phenomena as fatigue, corrosion, erosion and abrasion. The constant 

failure rate is typical of components which have a probability of 

failure independent of its age. This can result, for example, from 

a situation in which excessive loads can cause failure where load 

fluctuations are nurely random in time such as wind loads. 

18 



Examples: 

1. Exponential Distribution 

For this case 

f(t)  = Xe"Xt 

F(t)  =  l-e'Xt 

Rft) = e"Xt 

A(t) = >  = constant f2) 

The exponential distribution describes the constant failure rate cas**. 

2. Weibull Distribution 

p  R-l      B 
f(t)  = — -   e 

F(t) - 1 - e-(t/n)B 

R(t)  = e"(t/n^ 

B t6-1 
A(t) = w   ^ (3) 

in which B and n, are distribution or population parameters.  Note that 

for the Weibull distribution B values less than, equal to and greater 

than unity yield failure rates which are decreasing, constant and 

increasing respectively. This characteristic makes the Weibull distri. 

bution a useful one in reliability analysis. 

(b)  Mission Reliability of a Component Within a System [3, 

Consider next the situation of a component within a system. 

The auantity of interest here is the reliability of the component for 

10 



3 
Barlow, R. E., and Proschan, F., "Mathematical Theory of Reliability," 
John Wiley F, Sons, New York (1965). 

4 
flnedenko, B. V,, Belyayev, Yu.K., and Solovyev, A. D., "Mathematical 
Methods of Reliability Theory," Academic Press, New York (1069). 

Pieruschka, E., "Princinles of Reliability," Prentice-Hall, Ent»lewood 
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a mission time interval of (t, t • T) wh^re t is the system aj>e and T 

is the mission length. Prior to time t the component could have 

failed and been replaced one or more times. Figure 2 denicts the 

conditional failure rate Aft) of a component within a svstem showing 

failure noints for an increasing failure rate. 

Component 
failure 
Rate 

nailures with Subsequent 
Penewals 

System Are 

Figure 2. Component Failure Rate vs Svstem Age For The Case 
Of Ideal Repair 

In general the failure times of components within a system are not 

known in advance as depicted in Figure 2 and consenuently must be 

treated probabilistically. This is accomplished by defining another 

quantity h(t) called the renewal rate or unconditional failure rate 

which is an ensemble average of the failure rate over the population 

of all systems. The renewal rate is defined such that 

h(t)dt = unconditional probability of component failure 
in system time interval (t,t+dt). 
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The  renewal rate for a given component is a function of the 

underlying failure distribution given by the following equation: 

h(t) = f(t) + fZ  h(x)f(t-x)dx. 
0 

Derivation of this equation is presented in references ]?.],   [3] and 

elsewhere.  Logically, equation (4) can be derived from the theorems 

of total and conditional probabilities [6] alonp with the definitions 

of the terms in equation (4). Multiplying both sides of equation (4) 

by dt and considering the integral as a sum we have 

f(t)dt • Probability that the original component fails 

in the time interval  (t, t + dt). 

h(x)dx • Probability that a failure and subsequent renewal 

occurred in time interval  (x, x • dx). 

f(t-x)dt • Conditional probability that a component which 

was renewed at time x fails in the time interval 

(t, t + dt). 

h(x)f(t-x)dxdt • Unconditional probability of failure in time 

interval  (t, t • dt) for a component which could 

fail at time x. 

f(t)dt + 

/ h(x)f(t-x)dxdt • Total probability of failure which is the sum of 
0 

all possible conditions which could lead to 

failure in the time interval (t, t + dt), 

= h(t)dt by definition. 

The mission reliability can now be determined from the renewal 
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rate h(t) using the relation from reference f4] 

R(t,T)  =  1-F(t+T)  + / [l-r(t+T-x)lhCx)dx (5) 
0 

in which 

R(t,r) = Mission reliability at svstem time t for a 

mission length T, 

= Probability of no failure in (t, t+x). 

l-F(t+r) = Probability that the original component in the 

system has not failed at time t+T. 

l-F(t+T-x) • Probability that a component which failed at 

time x has not failed at time t+T. 

h(x)dx • Probability of failure at time x. 

Typical examples of the renewal rate and mission reliability of an 

increasing failure rate component are deoicted in Figures 3 and 4. As 

can be seen the renewal rate increases with svstem age until about a 

system time enual to the MTBF (mean time between failure) of the 

component. The renewal rate then approaches a constant value enual to 

the reciprocal of the MTBF. The reliability OP the other hand de- 

creases from a value of 1.0 at t=0 and approaches a constant value. 

The asymptotic values of h(t) and R(t,T) can be derived directlv from 

equations (4) and (5) by passing t to the limit infinity. These 

values are given by the relations 

h(»)   = l/'TTBF 

1 
R(«yr) - jjjrr/ [1-F(x)|dx. 

T (6) 

4Hnedenko, B.V., Belyayev, Yu.K., and Solovyev, A.D., "Mathematical 
Methods of Reliability Theory," Academic Press, New York (1969). 
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Component 
Renewal 
Rate 

<1TB^ 

0 ' Svsten Are 

Figure 3. Component Renewal Rate vs System Ape. 

1.0 

Comnonent 
Reliability 

0 Svstexii A^e 

Figure 4. Component Reliability vs System Age. 
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For the exponential distribution (constant failure rate) the 

renewal rate and reliability are both constant throughout system life 

-AT 
and are equal to X and e   respectively. 

It should be noted at this point that for a high reliability sys- 

tem (say .85 or greater) the MTBF of the comnonents comnrising the 

system should be of the same order of magnitude as the expected or 

required system life. Consequently, the components within a system 

are essentially exercised within the transient nortion of their lives 

thus indicating the general importance of considering renewal theorv 

in determining component reliability for high reliabilitv systems, 

(c) Numerical Solution for the Renewal Rate. 

A number of numerical techniques were investigated to 

solve the integral equation (4) for the renewal rate h(t). The most 

computationally efficient solution investigated thus far was through 

the use of finite difference methods [7],  Finite difference yields a 

direct solution for the renewal rate. Other more general technioues 

investigated which give comnlete solutions to the renewal problem 

(e.g. probability distribution of total number of failures or time to 

nth failure) involved the use of orthogonal expansions of Lanlace 

transforms. Two sets of orthogonal functions considered were trigono- 

metric and Laguerre nolynomials. The finite difference solution, 

although limited to solution of the renewal rate, generally required 

less computer time for given accuracy. The solution is also quite 

general in that it can be used to determine renewal rate for most 

theoretical distributions of failure time applicable to reliability 

7 
McKelvey, R. W., "An Analysis of Approximate Methods for Predholm's 
Integral Equation of the First Kind," December 1956, ADr>5f)530. 
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theory. 

In solving equation (4) using finite differences, the density 

f(t) and the renewal rate h(t) are discretized over a fixed time inter- 

val generally the system life.  In this case f(t) and h(t) are written 

as 

f(t)  = f(kAt)  = fk 

h(t)  = h(kAt)  = hk 

t = kAt where k=n,l,...,n. 

The integral equation (4) can then he written as 

t A   k_1 
/ f(t-x)h(x)dx • _ I       [f(kAt-iAx)h(jAx) + 
0 2  i=n 

•f(kAt-(i*l)Ax)hC(i*l)Ax)] 

Ax   v 

j = l  [f. .h. • f. . .h. .] J k-i j k-i-1 i + lJ 

for k = 1,... ,n 

0 for k = o. 

(7) 

Substituting into equation (4) then gives 

j=0 

for k • l,...,n (8) 

= f for k = o. 

Equation (8) renresents n+1 equations with n+1 unknowns which can be 

readily solved using Gaussian elimination. 
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A difficulty is encountered in some situations where f(0) • « 

such as in the case of the Weibull distribution with shape narameter 

8<1.  In this instance f(0) is fixed at a finite value such that the 

actual area under f(t) in the interval (0, At) (i.e. F(At)) is made 

equal to the finite difference area (f(0) + f(At))At/2. 

(d) Numerical Solution for Mission Reliability. 

Once the renewal rate is determined the transient 

mission reliability can then be computed from equation (5): 

R(t,T) » l-F(t+x) + fZ   p-F(t+T-x)lh(x)dx. 
n 

Numerically, this equation is difficult to solve since the integral 

must be evaluated over the whole interval (0,t) for each different 

value of t.  By making use of the renewal equation an equivalent 

equation for R(t,r) can be derived which is commitationally more 

efficient.  Integrating the renewal equation (4) from 0 to T gives 

H(T)  »  F(T) + / H(T-x)f(x)dx (9) 
0       j 

where H(T)  = / h(t)dt. 
0 

Making the substitution T=t+x in equation  (9)  gives the following 

equation: 

t+T 
H(t+T)     »    F(t+T)  +    /      H(t+T-x)f(x)dx. (10) 

0 

Integrating by parts and using the fact that H(0)  = n and F(0)  = n 

then gives 

2« 



t+T 
H(t+T)  = F(t+T) + /   P(x)h(t*T-x)dx 

0 
t+T 

=  F(t+T) + /   T7(t+T-x)hfx)dx. fll) 
n 

From equation (11) the following equation can he readilv derived: 

t t + T 

/  fl-F(t+T-x)]h(x)dx = r(t*x] - J   ri-^ft*T-x)]hfx)dx 
n t 

(12) 
t 

where the definition H(t) = / h(x)dx was used. 
o 

Substituting equation (12) into equation (S) for mission reliability 

finally yields 

t+T 
R(t,T)  =  1 - /    ri-T7(t+x-x)lh(x)dx (13) 

t 

Note that in this equation the integral is evaluated onlv over the 

interval (t, t+T) and that the value of F(v) is reouired onlv over 

the interval (0,x). This simplifies the numerical solution for mission 

reliability. 

(e) Average Mission Reliability. 

Interval reliability as discussed in the previous 

section is a transient function of system age. Weapon svstem renuire- 

ments, however, generally specify one value of mission reliability for 

the system. This snecified value could represent the lowest reliability 

to be experienced by the system or an average value over system life. 

In the computer model average system reliability is comnuted using the 

relation 



1  ? 
R(T) - - I   R.(T) (14) 

n i.i i 

in which 

R-CT) = Reliability for the ith mission 

n • Expected number of missions over system life. 

Computation of System Mission Reliability. 

In general, system reliability can be computed directly from 

the component reliabilities using an appropriate reliability model 

[2,8], For example, for the series reliability model, system reliabili- 

ty Rs(t) is determined from 

n 

Rs(t) « TTRi(t) (is) 
i-1 

in which 

R^(t) • Reliability of the ith component 

n = Total number of components. 

A series model is applicable whenever the failure of a single 

component within a system results in a failure of the system. This 

model has been initially chosen for the data analvsis computer model. 

In the more general case where redundancy and load sharing are 

inherent in the system, reliability models are more complicated but 

csn be derived in most given situations [2,81. 
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Probability Distribution Selection. 

One of the more difficult and questionable aspects of data 

analysis is the selection of a theoretical distribution applicable to 

a given set of data. This is particularly true for small data sarnies 

where information is ultimately required at the tails of the distri- 

bution.  In the case of component failure data, theoretical considera- 

tions, prior history and experience play a large part in distribution 

selection. For example, for particular failure modes such as fatigue 

the lognormal and Weibull distributions have been found to yield Rood 

characterizations of the data [9, 10], 

The data analysis computer model includes a distribution fitting 

program to assist in the selection of a best-fit theoretical distri- 

bution for use in reliability computation. Essentially, this program 

computes the standard error for a number of different candidate 

distributions. The standard error is a measure of the deviation of 

the data from the theoretical cumulative distributions. 

The Kolmogorov-Smimov statistical goodness-of-fit test is also 

used to determine which of the theoretical distributions can be 

rejected for given confidence level. Final selection of the distri- 

bution can then be made based on the computer results, theoretical 

considerations and/or personal experience and judgment. 

(a)  Candidate Distributions. 

Following are the candidate distributions considered 

for characterizing component failure times. In order to standardize 

terminology used to describe the distribution parameters, the terms 
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scale, shape and location parameters are used for all distributions 

and are defined below. 

(1) Exponential 

f(t) = ~e't/n (16) 

where n = MTBF = scale parameter 

= 1/X 

X = constant failure rate. 

(2) Normal 
1  t-U 2 

f(t) -   e 2 ° (17) 
/2if a 

where u = *fi*BF • scale parameter 

o • Standard deviation • shane parameter. 

(3) Weibull 

6     t-y e-i    -(^)B 

f(t)  = (ft     rS-J    e  n (18) 

where                           u • >1TBF    = y +nr(l+l/8) 
2 2 2 

a = Variance    =    rf [r(l*2/B)-r  (1*1/6)] 

H = Scale parameter 

3 • Shape parameter 

y • Location parameter. 

(4)  Lognormal 

(t-y)/2T 8 

1 2 
1      - rsT(*n(t>Y)-n) 

f(t) *   e 2P (19) 
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where        V    = '1TBF » y+e 
2 -> 

a = Variance = e (e -1) 

p • Average {£n t} = Scale parameter 

B = Standard Deviation f?,n tl • Shape parameter 

Y = Location parameter. 

(5)  r.amma 

f(t)  . Ii^!ll  e"^ C20) 
T(B)p3 

where u = lTBP = Y*BP 

2 2 a  = Variance « Bp 

p = Scale parameter 

B = Shane narameter 

Y = Location parameter. 

More detailed discussions of these distributions can be found 

in the literature [6,11], 

(b)  Least Squares Fit of Data [12]. 

For each distribution other than Hamma a least 

squares fit of the data to the distribution is made. Henerally, the 

theoretical distribution is linearized as far as nossible to simnlify 

computation.  In the case of the Camma distribution maximum likelihood 

estimates of oarameters are used rather than solving the more difficult 

nonlinear nroblem. 

The cumulative distribution function £(t) is used in fittintj the 
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data with the median ranks being used as the true values of the cumula- 

tive distribution associated with each ordered data point [13]. The 

median ranks for a complete data sample are computed using the relation 

i-0.3 
MR.  = .  (21) 

.1    n-0.4 

where     n = Data sample size 

i = l,...,n 

= Order numbers for the data where the data is 

sorted in increasing order. 

When suspended data has been generated along with failure data, 

the median ranks are determined for the failure data onlv with the 

suspension times being used to modifv the median ranks ri3].  In this 

instance the failure and suspension data are sorted in increasing 

order. The sample size n in equation (21) is now the total number of 

failure and suspension data items. The order number i associated with 

each failure item is determined as follows;  initiallv i is set equal 

to zero. An increment is then computed which is to be added to i to 

give the order number for the first failure item using the general 

relation 

n • 1 - (Previous Order Number) 
New Increment = 

1+(Number of Items rollowing the Present 
Suspension Set). 

C22) 

If there are no suspension data prior to the first failure, then the 

increment is 1.0 and the order number for the first failure item is 

1.0. This procedure is repeated for each subsequent failure item 

1 ^ Johnson, L.G.t  "Theory and Technique of Variation Research," Hlsevier, 
New York (1964), Chapter 8.     _ 



using equation (22) in each case. The median ranks are then computed 

using equation (21). 

The median ranks are considered to be the true values of ^(t) 

associated with the ordered failure times t.. The distribution para- 

meters for a given theoretical form of F(t) are thon determined by 

minimizing the sum of the squares of the error between the theoretical 

distribution evaluated at the failure times and the median ranks or 

between the transformed distribution and median ranks. 

Consider as an example the Weibull distribution. In this case 

t-Y B 

F(t)  = 1 - e "HH . (23) 

Rearranging equation (23) and then taking double logs gives 

£n£n(l/(l-F(t))) » B(An(t-y)-inn). (24) 

For fixed Y, this equation is linear in £n(t-Y). The error between 

the transformed theoretical distribution and the data is then given by 

e. » 6(P-n(ti-Y) - £nn) - lnta(l/(l-»1R )) (25) 

where    t. • ith failure time 
l 

MR.  = ith median rank. 
l 

The oarameters 8, o. and Y are then found which minimize the total 

2    r 2 
square error c • 2,ej* A similar approach is used for other distri- 

butions. 

(c) Computation of the Standard Error [12], 

In general, the standard error in the fitting of 

12Draper, N.R., and Smith, H., "Applied Regression Analysis" John Wiley 
g Sons, New York (1966). 
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a theoretical distribution to data is not the same as the error dis- 

cussed in the previous section. The standard error is a measure of 

the difference between the untransformed theoretical distribution and 

the median ranks. The standard error is defined bv the following 

equation: 

( I   Crct.)-MR.)2)1/2 
i = l    *   T 

s.e. = Standard Error =  ——     (26) 
n - n - 1 

where  F(t.) = Theoretical distribution evaluated at the failure 
1     tines tj. 

»|R.  a Median ranks 

n = Number o^ failure noints 

p -    Number of nonulation parameters estimated in 
determining p(t). 

The smaller the s.e. the closer the data fits the theoretical distri- 

bution. 

(d)  Kolmogorov-Smimov Goodness of Fit N4"|. 

A non-parametric distribution has been derived bv 

Kolmogorov [15] and Smirnov f16] for a particular statistic d which 

is a measure of the fluctuation of sample data about the theoretical 

distribution from which the sample is drawn. The statistic d is de- 

fined as the maximum absolute deviation between the theoretical and 

observed cumulative nrobability distributions. The theoretical distri 

bution is fixed by specifying both the functional form and the para- 

meters^  

Siegel, S., "Nonparametric Statistics for the Behavioral Sciences," 
McGraw-Hill, New York (1956), Chapter 4. 
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In application of the K-S statistic, a Riven set of data is 

hypothesized to have heen drawn from a Riven theoretical distribution. 

The statistic d is then determined from the data and compared to the 

K-S distribution of d. That is, for given significance level a or 

confidence level (1-ct) the theoretical value d is determined from 

K-S tables and compared to the computed d.  If d>d , the hypothesis 

is rejected.  If d<d then there is no sufficient reason to reject the 

given theoretical distribution and the hypothesis may be accepted. 

The statistic d is determined for the candidate distributions 

in the computer model to provide bases for reiecting distributions and 

to help indicate the best-fit distribution. 

Maximum Likelihood Estimates of Parameters [17], 

Maximum likelihood estimates of population parameters are 

determined for each component within a svstem for which failure data 

has been generated. There are a number of reasons for generating 

maximum likelihood estimators as part of the reliability model. First, 

maximum likelihood yields estimates of parameters which have a number 

of desirable attributes. For example, if an efficient estimator for 

small samples exists (i.e. one with minimum variance), then maximum 

likelihood provides such an estimator.  In general then minimum con- 

fidence intervals can be derived in this case. Maximum likelihood 

estimators are also consistent in that thev anoroach the true para- 

meter values as sample size increases.  In addition, maximum likeli- 

hood estimators are asymptotically normal as sample size increases 

Mood, A.M., and Craybill, r.A., "Introduction to the Theory of 
Statistics," McGraw-Hill, New York (1063), Chapter 8. 
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for most cases. This simplifies determination of confidence intervals 

for large samples. 

A second reason for determining maximum likelihood estimates is 

that they can be computed for relatively general underlying probability 

distributions through the use of routine mathematical procedures. 

Finally, the numerical procedures planned to be used in the computer 

model to determine confidence intervals require the maximum likelihood 

estimates of parameters to improve computational efficiency. 

The basic idea behind maximum likelihood estimation is relatively 

straightforward. One assumes first that a sample of nf failures and 

n suspensions have been generated from a given theoretical distribu- 

tion with parameters c^ * (a. ,a2,... ,ct ). The failure and suspension 

data are designated as t^. (i=l,... ,nf) and t .(i=l,...,n 1 respectively. 

The joint probability distribution of the random sample of failure and 

suspension times can be written as 

L(t;o/) » gt(tfl,..*,tfn »tsl»---»t
sn ;i) (2?) 

where    L(t;a)  » Defined as the likelihood function 

g.  « Joint distribution of the sample outcome 

t = Vector of the sample data values 

a • Vector of parameters for given underlying 
distributions of failure times. 

It is next assumed that each failure and suspension time is a 

statistically independent outcome.  Equation(27) can then be written 

in terms of the failure density f(t) and the cumulative distribution 
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F(t) as follows [6] 

ns 

L(t;o) - C | |  f(tf.;op       [1-F(t .;o)] 
i«l i=»l 

(28) 

where        C • Normalizing constant such that the area under 
L(t;a) is unity 

f(t;a)  • Theoretical density distribution of failure times. 

F(t;o) • Cumulative distribution function 

= J* f(x;o)dx 
n 

[1-F(t;ct)]  = Probability that the failure time is greater than 
t. This term is used to represent the nrobabilitv 
of obtaining the suspension times. 

As can be seen, the likelihood function L is defined as the 

multivariate probability distribution of the random failure and sus- 

pension times. Solving for the parameters c^ such that L is maximized 

consequently gives the highest probability density for the given sample 

outcome t. The parameter values which maximize L are denoted as a 

and are called the maximum likelihood estimates of cu 

In practice in L given by equation (29) is maximized rather than 

L to simplify computation. This can be done since the maximum of 

any positive function and its log are equivalent. 

Jin L(t_;a) = In C *      I    In  f (t_. ;a) 
i-1      " 

"s 
• I    An[l-F(t  :o)] (29) 

j-1       *"> 

Panoulis,  A.,  "Probability,  Random Variables,  and Stochastic 
Processes," McGraw-Hill, New York    (1965). 
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Consider the Weibull distribution as an example. For this case 

F(t;ci)  = 1 - e  n 

where        a •  (n,B,Y). 

The likelihood function can then be written as 

nf 

An L    *    An C +    £     r£nB-£nn.+ (B-l)(£n(t    -Y) 
i=l fl 

*£/*" "s        V"7* 
- Ann)   -   (—••—D   ]   ~    f       (—~~) (30) 

n i^i       * 

Solving for n,B and y which maximize An L yields the maximum likeli- 

hood estimators for the Weibull parameters. 

Likelihood functions such as given by equation (30) are maximized 

in the computer model using Rosenbrock's algorithm ("18] which is a 

general solution of the unconstrained minimization problem for non- 

linear functions. Minimizing the negative of An L maximizes the 

function. 

Once point estimates of the failure distribution parameters are 

generated for a given component, the mission reliability can be com- 

puted using the methods previously presented. 

1 8 
Rosenbrock, H.H., "Automatic Method for Findinp the Greatest or 
Least Value of a Function," Computer .Journal, Vol. 3, (1061), 
pj).   175-184. 
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Bayesian and Classical Confidence Intervals for Component 

Reliability. 

Classical methods of confidencing component mission reli- 

ability for small samples are generally available onlv for the constant 

? failure rate case.  In this instance the x distribution represents 

the inferencing distribution for the "fTBF from which confidenced reli- 

ability can be derived [2]. Bayesian methods will consequently be used in 

the computer model for the non-constant failure rate components since 

this method provides a svstematic means o^ determining confidence inter- 

vals for more general problems. A complete discussion of Bayesian 

statistics will not be presented in this report and the reader is 

referred to the books by Lindley [19] for a more complete discussion 

of this topic. 

Bayesian inferencing is based, as the name implies, on Bayes" 

probability theorem which is essentially a conditional probability 

statement: 

Bayes' Theorem: 

f(X.x) = f(y;x)f(x) = f(x;y)f(y) (SI) 

in which 

f(y»x) • Joint probability density of random variables 
x and y. 

f(y;x) • Conditional probability of y given x 

f(x;y) = Conditional probability of x given y 



2 
Lloyd, D.  K., and Lipow, M., "Reliability:    Management, Methods, and 
Mathematics," Prentice-Hall, Englewood Cliffs, New Jersey  (1962). 

19 
Lindley, D.V., "Introduction to Probability and Statistics from a 
Bayesian Viewpoint," Part 1: Probability and Part 2:  Inference, 
Cambridge University Press, Cambridge (1965). 
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f(x)» f(y) • Marginal distribution of x and y respectively. 

From equation (.31) 

f(y) 
f(y;x)  = f(x;y) *— " (37) 

f(x) 

In the Bayesian aonroach thn unknown mrameters of the distrihu- 

tion of failure times are considered to be random variables.  The 

sample outcome t from a given test are also random variables which 

are dependent on the distribution narameters.  Bayes' theorem, eouation 

(32), can be written in this instance as 

f(a) 
f(a;x) = f(x;a)   (33) 

f(x) 

in which 

f (a;x) = Density distribution of narameters given the 
test sample x. 

f (x_;a)  = Density distribution of the samnle outcome 
given the narameters m. 

f(a),f(x)  = Marginal densities of rx_ and x_ respectively. 

In equation (33) the distribution f(x;ot) is iust the likelihood 

function L(x_;ot) by definition. The distribution f(oi) is called the 

prior of a and f (rt;x) is called the posteriori distribution of r^ 

since it is determined after the samnle x_ is determined and is con- 

sequently conditioned by the test results. 

The prior distribution f(a) generally reflects nrior knowledge 
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or prior data on the population parameters a before the test results 

x have been generated.  For the case of weapon system components there 

is at the present time little or no prior information and consequently 

f(a) must reflect in some way our prior ignorance of the values of a. 

Choosing the prior distribution to reflect decrees of ignorance is one 

of the more difficult and questionable aspects of Bayesian statistics. 

Much research work is presently being conducted on the question of 

prior distribution selection.  Priors which represent maximum ignorance 

for some of the simpler problems have been found [19,70].  It has also 

been found, however, that a uniform nrior on the parameters yields 

confidence intervals that are generally close to exact in a classical 

frequency sense for a number of reliability indices. The uniform 

distribution assigns equal probability to all values of a random 

variable over a given range. The robustness of uniform priors is 

discussed somewhat in reference [19]. Uniform priors have consequently 

been used in our reliability statistics work and have also been found 

to be generally robust. 

The distribution f(x) in eauation (33) is considered to be a 

constant and is determined so that the area under f(o;x_) is unity. 

Equation (33) can now be rewritten in the following form: 

f(a;x) - C L(xjo) (34) 

where    f (a;x) • Posteriori distribution of ot_ given x_. 

C = Constant such that area under f (nyx) is unity. 
The constant C contains the constant terms 
f(x) and f(ct). 

4* 



19 
Lindley, D. V., "Introduction to Probability and Statistics rrom a 
Bayesian Viewpoint," Part 1: Probability and Part 2:     Inference, 
Cambridge University Press, Cambridge fl9f,S). 

20 Jaynes,  E.  T.,  "Prior Probabilities,"  IEEE Transactions  on  Svste^s 
Science and Cybernetics, Vol.  SSC-4, No.   3,  Scot.   1^8,  no.   227-241 
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L(x;a) • Likelihood function. 

In computing confidenced reTiability our interest is not on the 

•parameters themselves but rather on a function of the parameters. 

From probability theory [6] the cumulative distribution of any function 

z of the random variables a is determined by the relation 

F_(z;x) = /// f(a;x)dn f35) 

in which 

F (z;xj = Posteriori distribution of Z 

D  « Domain of Z_ such that Z(o)<z 

f(a;x)  • Posteriori distribution of a i»iven by 
equation (34). 

Once the posteriori distribution ^(z;x) is known confidence 

intervals can be constructed on z for any given confidence level CL 

by determining the apnronriate Percentage points directs from F(z;50. 

For example, a lower confidence limit is determined by solving the 

following equation for z. : 

Fz(zL;x) « 1 - CL f.36) 

in which 

Zt     *    Lower confidence limit. 

CL    =    Confidence level. 

Since component mission reliability is a direct function of the 

failure distribution and hence of the parameters,  confidence intervals 

Panoulis,  A.,  "Probability, Random Variables,   and  Stochastic 
Processes," McGraw-Hill, New York   ("1965). 
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on mission reliability can be determined using the above formulation. 

Solution of equations (34), (35) and (36) for confidence limits can 

be accomplished numerically using computer routines. 

Bayesian Confidence Intervals for Svstem Reliability. 

(a)  Constant Failure Rate Comnonents In Series. 

Confidence intervals on component reliability for con- 

2 
stant failure rate can be determined using the x distribution f2]. 

For a system of components in series, however, classical confidence 

intervals can be readily determined only if all components have eoual 

test times.  In this instance the svstem can be treated as if it were 

a component with all failures being counted as system failures regard- 

2 
less of which components fail. The x distribution can again be used 

to determine confidence limits. 

For series components with unequal test times, however, classical 

methods do not generallv apply. For this case Bayesian statistics, as 

discussed in the previous section, can be employed to determine confi- 

dence intervals. 

Consider the series svstem 

R  =    |  R. (37) 
i=l   1 

in which R  = Svstem reliability, 
s 

n  = Number of components, c 

R.  = Reliability of the ith component, 
l 

2 
Lloyd, D. K., and Lioow, M., "Reliability: Management, Methods, and 
Mathematics," Prentice-Hall, Englewood Cliffs, New Jersey (1062), 



For constant failure rate, R. = e i  and the system reliability 

becomes 

nc 
  -A.T     -A T 

R  =  ||e    = e S (38) 
5     i=l 

where n c 
x   =   y   x. 

i=l  x 

The system failure rate A is enunl to the sum of the individual 
s 

component failure rates. The posteriori probability density of the 

individual component failure rates can be determined usin.c? equation 

(34) by letting ot = A . Since A is equal to the sum of independent 
—   i        s 

random variables, the distribution for A is equal to the convolution 
s 

of the individual component distributions [6]. Performing the required 

convolution is generally tedious and it is at this point that a simpli- 

fying assumption is made. Using the Central Limit Theorem for sums of 

random variables [6] it is assumed that the oosteriori distribution for 

As is Gaussian. Consequently, all that is required is the mean and 

variance of A to define the oosteriori distribution. These are deter- 
s 

mined using the relations 

nc 
E(A J     =      I      E(A.) (30) 

s i=l 

nc 
Var(As)     =      I      VarCXj) M") 

i=l 

Where     E(*) • Expected value 

Var(*)  = Variance 

Papoulis, A., "Probability, Random Variables, and Stochastic 
Processes," McGraw-Hill, New York (T>65). 
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Confidence intervals can now be constructed for X    and hence for system 

reliability using equations (39) and (40). 

The accuracy of making the Gaussian assumption was checked and it 

was found that a system with about ten components and one to three fail- 

ures experienced ner comnonent yielded relatively accurate confidence 

intervals in comparison to true values.  In the example problem consi- 

dered test times for each component were assumed equal which permitted 

the comoutation of classical confidence limits. 

(b) Non-constant Failure Rate Components In Series. 

For the series svstem eouation (37) applies: 

"c 

R  -  | j  R 
s    i-1  1 

Taking logs of both sides of this eouation yields 

nc 
In R  =  7  InR. 

i-1 

Equation (41) represents a sum of independent random variables 

and consequently the posteriori distribution of InR can be determined 

using the Gaussian assumption as discussed in the previous section. 

Confidence intervals can then he constructed from this distribution. 

COMPUTER PROGRAM 

Two computer programs have been prepared to perform the compu- 

tations required for reliability data analysis. One program called 
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DISTSEL performs goodness-of-fit computations and is used to assist in 

distribution selection given component failure and suspension data. 

Included in this program are computations of  the standard error and 

Kolmogorov-Smirnov statistic. At the nresent time, the theoretical 

distributions that can be handled are the exponential, two and three 

parameter Weibull, two parameter lognormal, two parameter famma and 

the normal. 

The second computer program called RRLIAB Performs corn-nutations 

required to determine reliability and confidence limits for components, 

subsystems and system given component data. The component data in- 

cludes failure and suspension times and the associated theoretical 

distributions to be assumed. 

The fortran listings of the computer programs are lengthv; 

DISTSEL and RELIAB contain 17 and 25 subroutines respectively. These 

listings are consequently not contained in this report but can be 

made available upon request. The innut data format for both programs 

is presented in Appendix I and output data for a sample problem are 

given in Appendix II. 

As a final note, it should be emphasized that the computer models 

are flexible. Input and output data formats can readily be changed 

for particular situations, perhaps to render the programs compatible 

with a given computer data file system.  Improved versions of the 

programs will also be generated in the future. 
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APPENDIX I 

INPUT FORMAT FOR PROGRAMS DISTSEL AND RELIAB 

The following listings give the card by card description of the 

innut data and format required by the reliability data analysis 

programs. 

(a) Overall System And Subsystem Data Cards 

Card 
No. 

Column 
No. Description Format 

1 

2 

4 to 4 
+NSIJB 

1-80 

1-10 
11-20 
21-30 

1-40 

1-80 

Overall system identification. 

Number of missions over svstem life. 
Specified system life. 
Desired confidence level for relia- 
bility. 

Number of components per subsystem 
for which data is supplied. UP to 
four subsystems can be handled. 

Alphanumeric 

110 
FlO.o 
F10.0 

4110 

Subsystem identification. NSUB is the 
number of subsystems where one card 
is used to describe each subsystem.    Alphanumeric 

(b) Element or Component Data Cards 

The following data cards are required for each element 

starting with the elements of the first subsystem down to the elements 

of the last subsystem: 
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Card 
No. 

Column 
No. 

Description format 

1 
2-10 

11-80 

2   to  Tlj 

2-11 

12-80 

Theoretical distribution code number*, 
Element identification code number. 
Description of element. 

Code number for determining if data 
on card is a failure time, a suspen- 
sion time or last card ^or current 
element**. n.r is the number of 
failures and n is the number of 
suspensions. 
Failure nr susnensiop time.  If this 
is the last card then the remaining 
columns are blank. 
Description o*- the failure or suspen- 
sion. 

II 
19 

Alohanumeri c 

II 

^10.0 

Alnhanuneri r 

Distribution Code Number: 
1 - Exponential 
2 - Two parameter Weibul1 
3 - Three parameter Weibul1 
4 - Two parameter lognormal 
5 - Three narameter lo^nonnal 
6 - Two parameter gamma 
7 - Three parameter gamma 
8 - Normal 

Failure or Suspension Code Number: 
1 - Suspension 
2 - Failure 
3 - End of data 

(c) Sample Problem 

The following is a listing of data innut for a hypothetical reli 

ability data analysis problem: 
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SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS 
10 2000.0  0.70 
3 1         1         0 

SAMPLE PROBLEM SUBSYSTEM A 
SAMPLE PROBLEM SUBSYSTEM B 
SAMPLE PROBLEM SUBSYSTEM C 
1100000001 SAMPLE PROBLEM ELEMENT M 
2 1200.0 SPACE FOR rMLURE DESCRIPTION 
2 000.0 SPACE FOR FAILURE DESCRIPTION 
2 1500.0 SPACE FOR FAILURE DESCRIPTION 
2 1300.0 SPACE FOR FAILURE DESCRIPTION 
2 1350.0 SPACE FOR FMLURE DESCRIPTION 
2 1000.0 SPACE FOR FAILUF-H DESCRIPTION 
2   1300.0 SPACE FOR FAILURE DESCRIPTION 
2 1100.0 SPACE FOR FAILURE DESCRIPTION 
2 850.0 
3 
1100000002 

SPACE F0" PAIUPE DESCRIPTION 

SAMPLE PROBLEM ELEMENT A? 
2 1500.0 SPACE ^OR FAILURE DESCRIPTION 
1 8000.0 
3 
1100000003 

SPACE FOR SUSPENSION DESCRIPTION 

SAMPLE PROBLEM ELEMENT A3 
1 0000.0 
3 
2200000001 

SPACE FOR SUSPENSION DESCRIPTION 

SAMPLE PROBLEM ELEl*ENT Bl 
2 1200.0 SPACE ^OR FAILURE DESCRIPTION 
2 000.0 SPACE FOP. FAILURE DESCRIPTION 
2 1500.0 SPACE FOR FAILURE DESCRIPTION 
2 1300.0 SPACE FOR FAILURE DESCRIPTION 
2 1350.0 SPACE FOR FAILURE DESCRIPTION 
2 1000.0 SPACE FOR FAILURE DESCRIPTION 
2 1300.0 SPACE FOR FAILURE DESCRIPTION 
2 1100.0 SPACE FOR FAILURE DESCRIPTION 
2 850.0 
3 
4300000001 

SPACE FOR FAILURE DESCRIPTION 

SAMPLE PROBLEM ELEMENT Cl 
2 1200.0 SPACE FOR FAILURE DESCRIPTION 
2 000.0 SPACE FOR FAILURE DESCRIPTION 
2 1500.0 SPACE ^OR FAILURE DESCRIPTION 
2 1300.0 SPACE FOR FAILURE DESCRIPTION 
2 1350.0 SPACE FOR FAILURE DESCRIPTION 
2 1000.0 SPACE FOR FAILURE DESCRIPTION 
2 1300.0 SPACE "OR FAILURE DESCRIPTION 
2 1100.0 SPACE ^OR FAILURE DESCRIPTION 
2 850.0 
3 

SPACE FOR FAILURE DESCRIPTION 

'•ODEL 
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APPENDIX II 

OUTPUT DATA TT)R SAMPLE PROBLEM 

The following pages contain output data renerated bv p-rorrams 

DISTSEL and RELIAB for the sample innut data presented in Appendix I 
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RESULTS FROM PROGRAM DISTSEL 

FAILED SPECIMENS AND MEDIAN RANKS... 

850.0 0.07447 SPACE FOR FAILURE DESCRIPTION 
900.0 0.18085 SPACE norc FAILURE DESCRIPTION 
1000.0 0.28723 SPACE FOR FAILURE DESCRIPTION 
1100.0 0.39362 SPACE noi> FAILURE DESCRIPTION 
1200.0 0.50000 SPACE FOR FAILURE DESCRIPTION 
1300.0 0.60638 SPACE TOR FAILURE DESCRIPTION 
1300.0 0.71277 SPACE "OR FAILURE DESCRIPTION 
1350.0 0.81915 SPACE FOR FAILURE DESCRIPTION 
1500.0 0.92553 SPACE FOR FAILURE DESCRIPTION 
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STANDARD ERROR 0^ ESTIMATE... 

DISTRIBUTION 

EXPONENTIAL 
NORMAL 
LOC-NORMAL 
WEIBULL-2 PARM. 
WEIBULL-3 PARM. 
GAMMA-2 PARM. 

S.E. 

0.280808E on 
0.566338E-01 
0.657507E-01 
0.530806E-01 
0.642205E-01 
0.83200OE-O1 

DISTRIBUTION SELECTED... WEIBULL-2 PARAMETER 

K-S STATISTIC ( 0.141) IS LESS THAN TABLE VALUE ( 0.388) 
THEREFORE MAY ACCEPT HYPOTHETICAL DISTRIBUTION AT 10 PERCENT LEVEL 
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)DflTA 

1500 J_ 

SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS MODEL MARCH 1973 

100000000       SAMPLE PROBLEM ELEMENT Al 

EXPONENTIAL DISTRIBUTION...LEAST SQUARES ESTIMATE MEAN LIFE =  HUB. 173 

1339 __ 

1195 __ 

X X 

1067 __ 

952  __ 

850  __ 

-+- •+• -t- -t- -+- 
.001 01 .05 

f>7, 

.10    .20     .HO   .60  .80 ."90 

CUMULATIVE DISTRIBUTION 



SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS MODEL MARCH 1973 

DATA 

isoo _i_ 

lOOOOOOOO        SAMPLE PROBLEM ELEMENT Al 

NORMAL DISTRIBUTION...LEAST SQUARES ESTIMATES   MEAN LIFE 

STANDARD DEVIATION =»2H5.0730 

1166.665 

137Q __ 

1240 __ 

1110 __ 

980  __ 

650  __ 

.001 .20 

M 

HO   .60     .80   .90  .95 

CUMULATIVE DISTRIBUTION 



SAMPLE PROBLEM TO DEMONSTRATE RELIRBILITT DATA ANALTSIS MODEL MARCH 1973 

DATA 

1SQO _L 

lOOOOOOOO SAMPLE PROBLEM ELEMENT HI 

LOG NORMAL DISTRIBUTION...LEAST SQUARES ESTIMATES 

STANDARD DEVIATION =2S9.UU38 

MEAN LIFE = 1175.337 

1195 __ 

.001 

65 

.40   .60    .BO   .30  .95 

CUMULATIVE DISTRIBUTION 
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SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS MODEL MARCH 1973 

DRTfl 

1500 

1UU0O00OU       SAMPLE PROBLEM ELEMENT Al 

2-PARM. HEIBULL...LEAST SQUARES ESTIMATES  SHAPE = 5.587 

SCALE = 1259.OD 

1339 __ 

1195 __ 

1067 __ 

9SE  _. 

850  __ 

.001 .01 
 1— 
.05 

66 

•+- -+- •+• -i— 

.10    .20 

CUMULATIVE 
.40   .60  .80 .90 

DISTRIBUTION 



SAMPLE   PROBLEM   TO   DEMONSTRATE   RELIABILITY   DATA  ANALYSIS  MODEL MARCH   1973 

.DflTfl 

903 

100000000 SAMPLE   PROBLEM  ELEMENT   Al 

3-PARM.   HEIBULL...LEAST   SQUARES  ESTIMATES       SHAPE  =   2.494 

SCALE   =  648.866 

LOCATION  =     597.253 

700      __ 

543      __ 

421      -- 

326      __ 

253      __ 

H  
.001 

•+• -+- -+- •+• •+ •+• 
01 .05 

67 

.10    .20     .40   .60  .80 .90 

CUMULATIVE DISTRIBUTION 



SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS MODEL MARCH   1973 

lOOOOOOOO SAMPLE   PROBLEM  ELEMENT   Al 

GAMMA  DISTRIBUTION...2-PARAMETER       MAXIMUM  LIKELIHOOD  ESTIMATES       ALPHA  =   30.71U 

BETA  =   37.98U 

Q 
Q 

ao 
CD 

un 

o 
i—iCl 
. to 

CO 

az 
I— 

•—,LD 

DQ 

LU 
> 

l—CO 

u 
un 

en 

a 

o 
o 

^0.00 90.00 100.00 110.00 120.00 
DATA     *10' 
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